Как избавиться от минусов дроби

Отрицательные дроби

Отрицательные дроби — это дроби, числитель или знаменатель которых является отрицательным числом.

Отрицательные дроби могут быть записаны по-разному. Например, рассмотрим два частных:

каждое из них равно отрицательному числу

Каждое из данных частных можно записать в виде дроби, в которой дробная черта заменит знак деления:

-2 : 7 = -2 и 2 : (-7) = 2 .
7 -7

Следовательно, при записи отрицательных дробей знак минус можно ставить перед дробью, перед числителем или перед знаменателем:

2 = -2 = 2 .
7 7 -7

Сложение и вычитание

Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел.

2 + (- 1 ) .
5 4

Приведём дроби к общему знаменателю:

2 + (- 1 ) = -8 + -5 .
5 4 20 20

Теперь сложим числители дробей по правилам сложения рациональных чисел:

-8 + -5 = -8 + (-5) = -13 = 13 .
20 20 20 20 20
2 + (- 1 ) = -8 + -5 =
5 4 20 20

= -8 + (-5) = -13 = 13 .
20 20 20

Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.

5 — (- 11 ) = 5 + (+ 11 ) =
12 12 12 12

= 5 + 11 = -5 + 11 = 6 .
12 12 12 12

Сложение и вычитание отрицательных дробей производится по правилам сложения обыкновенных дробей, то есть сначала идёт приведение к общему знаменателю, если это нужно, а затем производятся вычисления.

Умножение и деление

Чтобы найти произведение двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем перемножить дроби по правилу умножения дробей.

2 · (- 4 ) = -2 · -4 = -2 · (-4) = 8 .
3 5 3 5 3 · 5 15

Так как при умножении двух отрицательных чисел результат будет положительным, то данный пример можно решить сразу, отбросив оба минуса:

2 · (- 4 ) = 2 · 4 = 2 · 4 = 8 .
3 5 3 5 3 · 5 15

При умножении отрицательной дроби на положительную результат будет отрицательным.

2 · 4 = 2 · 4 = 8 .
3 5 3 · 5 15

К отрицательным дробям можно применять любые законы умножения. Поэтому предыдущий пример можно переписать так:

4 · (- 2 ) = 4 · 2 = 8 .
5 3 5 · 3 15

То есть при умножении положительной дроби на отрицательную результат будет отрицательным.

Чтобы найти частное двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем произвести вычисления.

2 : (- 4 ) = -2 : -4 =
3 5 3 5

= -2 · 5 = -10 = 10 .
3 · (-4) -12 12

Знак результата умножения или деления отрицательных дробей можно узнать по правилам знаков целых чисел.

Источник

УРОК 8: «Отрицательные числа в дробях»

Краткое описание документа:

Почему этой теме посвящен отдельный видеоурок? Дело в том, что встречая дроби с отрицательными числами, многие ученики часто допускают ошибки, которые, впрочем, легко избежать, если рассмотреть данный метод.

Данный метод, который мы сейчас рассмотрим, основывается на том, чтобы привести дробь к удобному для нас виду, с которым мы уже ничего не напутаем.

Для начала давайте посмотрим на элементарные примеры:

1) Сколько будет «двенадцать делить на минус четыре». Конечно же «минус три».

2) А сколько будет «минус двенадцать разделить на четыре». Тоже «минус три»!

3) А если вот так: «минус. двенадцать делить на четыре»? И здесь также получим «минус три».

А теперь, если мы вспомним, что дробь — это деление, и черту дроби можно написать вместо знака деления, то получим следующее.

Ну а так как эти дроби равны одному и тому же числу, то значит они равны между собой.

А из этой записи мы видим, что совершенно неважно где стоит минус: перед чертой дроби, в числителе или знаменателе! Результат получается одинаковым.

Давайте применим теперь это знание к решению конкретного примера.

Минус одна четвертая плюс пять третьих минус три пятых минус семь вторых.

Первым шагом превратим эту запись в сложение четырех слагаемых. То есть из минусов сделаем плюсы, ведь мы знаем, что «минус а» то же, что и «плюс. минус а».

Значит «минус одна четвертая» — это «плюс минус одна четвертая» — ну здесь плюс можно не писать, так как перед плюсом ничего нет. Затем, «минус три пятых» — это «плюс. минус три пятых». И «минус семь вторых» — это «плюс. минус семь вторых».

Ну а теперь эти минусы перед знаками дробей можно убрать в числители. и тогда скобки уже будут не нужны. мы получим сложение четырех дробей с разными знаменателями.

Решить этот пример уже гораздо проще, можно не бояться запутаться в минусах.

Приводим дроби к общему знаменателю. Здесь он будет равен. шестьдесят.

Числитель и знаменатель первой дроби доумножаем на пятнадцать, второй — на двадцать, третьей — на двенадцать и четвертой — на тридцать.

Пишем общий знаменатель — шестьдесят. А в общий числитель записываем по-порядку те числа, которые у нас получатся здесь: минус пятнадцать, плюс сто, минус тридцать шесть, минус двести десять. Если бы мы не выполнили первый шаг и вот здесь у нас остались бы стоять минусы, то мы легко могли бы запутаться со знаками. А так, когда здесь только плюсы, мы просто записываем в числитель полученные числа с такими знаками, с какими мы их и получили. Если «пять умножить на двадцать» было «сто», то и пишем «плюс сто». А если «минус три» умножить на двенадцать — это «минус тридцать шесть», то так и пишем минус тридцать шесть.

В этом и есть секрет данного метода. И какие бы сложные ни были примеры, применяя данный метод, вы никогда не запутаетесь в знаках.

Ну а здесь нам осталось посчитать числитель. Это будет минус сто шестьдесят один. Минус можно написать перед знаком дроби. Кстати, в ответе всегда лучше именно перед знаком дроби писать минус. Так принято. Ну можно еще выделить целую часть. Это будет. минус две целых сорок одна шестидесятая.

Итак, повторим наш метод:

«В примерах со сложением/вычитанием дробей первым шагом превращаем вычитание в сложение (для этого убираем знак «минус» в скобки). Далее переносим знак «минус» перед дробями в числители и просто выполняем сложение дробей».

Важный момент — вы должны не только запомнить это правило, но четко понимать его, чтобы успешно применять при решении примеров.

В следующем уроке мы рассмотрим очень важные замечания, о которых вам всегда нужно помнить, решая примеры с дробями.

Источник

Как убрать минус из дроби?

Как избавиться от минуса в дроби?

Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел. Пример. Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.

Можно ли минус из числителя дроби вынести перед дробью?

Знак «минус» можно перенести из числителя в знаменатель или из знаменателя в числитель, а можно поставить перед дробью. 8. Если перед скобками стоит знак «+», то при раскрытии скобок знаки слагаемых в скобках. А теперь, если мы вспомним, что дробь — это деление, и черту дроби.

Как возводить в степень отрицательной дроби?

Чтобы возвести число в отрицательную степень нужно:

  1. «перевернуть» число. Записать его в виде дроби с единицой наверху (в числителе) и с исходным числом в степени внизу;
  2. заменить отрицательную степень на положительную;
  3. возвести число в положительную степень.

Как сделать минус в дробях?

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений. Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

Как перенести из знаменателя в числитель?

5 — знаменатель. Для того чтобы обратить смешанное число в дробь, необходимо умножить целую часть смешанного числа на знаменатель и прибавить числитель дробной части. Полученный результат будет числителем обыкновенной дроби, а знаменатель останется прежним.

Что делать если числитель отрицательный?

Поэтому если в числителе стоит отрицательное число, а в знаменателе — положительное (или наоборот), смело зачеркиваем минус и ставим его перед всей дробью; «Минус на минус дает плюс». Когда минус стоит и в числителе, и в знаменателе, просто зачеркиваем их — никаких дополнительных действий не требуется.

Как сократить дробь со скобками?

Чтобы сократить дробь, найдите общий множитель числителя и знаменателя. Поделите числитель и знаменатель на общий множитель. Чтобы разделить многочлен на множители, вынесите общий множитель за скобку. Второй способ разделить многочлен на множители — применить формулы сокращенного умножения.

Как изменить знак перед дробью?

Перемена знаков у дроби: в числителе или в знаменателе

  1. Перемена знаков в числителе или в знаменателе дроби или перед дробью …
  2. Чтобы изменить знак или числителя, или знаменателя, нужно и числитель, и знаменатель умножить на «-1».

Как сократить дробь с разными знаками?

Сокращение дробей состоит в том, что числителя и знаменателя дроби делят на одно и то же число. и т. п. Итак, если в числителе и знаменателе имеются множителями различные степени одной и той же буквы, то можно сократить эту дробь на меньшую степень этой буквы.

Как найти число в минусовой степени?

Степень с отрицательным показателем

При делении степеней с одинаковыми основаниями из показателя степени делимого вычитают показатель степени делителя. Следовательно, если степень делимого будет меньше степени делителя, то в результате получится число с отрицательной степенью: a 5 : a 8 = a5 — 8 = a -3.

Как возводить в степень дробь?

Возведение дроби в степень

Для возведении обыкновенной дроби в степень, надо возвести в данную степень отдельно её числитель и знаменатель.

Как правильно возводить в степень алгебраическую дробь?

Правило возведения алгебраической дроби в степень производится последовательно: сначала числитель , потом знаменатель. Когда в числителе и знаменателе имеется многочлен, тогда само задание сведется к возведению заданного многочлена в степень. После чего будет указана новая дробь, которая равна исходной.

Как решать простые дроби?

Чтобы сложить две обыкновенные дроби, следует:

  1. привести дроби к наименьшему общему знаменателю;
  2. сложить числители дробей, а знаменатель оставить без изменений;
  3. сократить полученную дробь;
  4. Если получилась неправильная дробь преобразовать неправильную дробь в смешанную.

Как сложить положительную и отрицательную дробь?

Когда мы вычитаем две отрицательные дроби, то мы к первой отрицательной дроби прибавляем положительную вторую, так как минус на минус дает плюс.

Как решать дроби с минусом с разными знаменателями?

Правило. Чтобы сложить или вычесть дроби с разными знаменателями, нужно их сначала привести к наименьшему общему знаменателю, а потом производить действия сложения или вычитания как с дробями с одинаковыми знаменателями.

Источник

Читайте также:  Все виды укуса клеща
Оцените статью